

Your ref:

My ref: DGM/(CS&RA)/GEN/5-1

Date: August 7, 2019

Submission of Responses to the Clarifications Requested by PUCSL on Draft LTGEP 2020-2039

0.302

This has reference to your letter dated 2019-07-15 on the above.

I enclose herewith the responses of Transmission Licensee (Annex I) for your observations on Draft LTGEP 2020-2039.

Eng. S D W Gunawardana **General Manager**

Jour offer

Nalin

OFFICE OF THE GENERAL MANAGER

Se. No	Section Name	PUCSL Observation/ Comment	CEB Clarification
1		Oil power plant capacity is not sufficient to comply with the government policy target for 2030	Government policy stipulates the inclusion of 15% from furnace oil and renewable energy sources that can be considered as firm power.
			Firm capacity shares for Hydro, Coal and Natural Gas sources in 2030 are 26%, 30% and 34% respectively. The balance 10% of firm capacity share contribution is achieved from furnace oil, biomass and Pumped hydro storage technologies to meet the required frim capacity requirement.
			Dual fuel feature is also considered for natural gas fired combined cycle plants that provides enhanced supply security. More firm capacity through renewable energy is expected to realize once the 100MW battery storage is installed by 2030. The detail design stage of battery integration, will determine the level of renewable contribution that could be considered as firm capacity. This will enhance the present 10% share.
2		Is Renewable curtailment s required in case of hydro reduction	Curtailment requirement is expected with the planned renewable capacities due to seasonal characteristics, low demand period such as weekends. The wind and solar curtailment requirement is observed throughout planning period irrespective of the hydrological variation.

General

Se. No	Section Name	PUCSL Observation/ Comment	CEB Clarification	
3.	2.1.1 (b) Renewable Plants Committed	Moragahakanda is an existing plant	Will be corrected	

4.	Table 2.4 Plant Retirement Schedule	Compared to previous plan, retirement years of Small GTs, Sapugaskanda A Plants, Sapugaskanda B (2 nd 4 units) are delayed, but Sapugaskanda B (1 st 4 units) is advanced by 1 year	the retirement years of small GTs and Sapugaskanda B (2 nd 4 units) are delayed.
5.	Table2.6characteristicsof existing andcommittedCEBCEBownedthermal plants	Full load heat rate of Kelanithissa Combined cycle Plant 1,837 kCal/kWh is significantly lower than that in tariff filing 2,589 kCal/kWh (naptha)	
6.	Table2.6characteristicsof existing andcommittedCEBCEBownedthermal plants	Comparison – FO rates and maintenance years with LCLTGEP 18-37	

Se. No	Section Name	PUCSL Observation/ Comment	CEB Clarification
7.	E.1/ Table 3.3	2020 loss level (8.78%) in the plan is higher than the loss target issued by the PUCSL (7.5%)	Net loss determined based on the transmission and distribution loss of the system in the years of 2017, 2018 and projections provided by the respective Distribution Divisions. In addition, loss will vary and depend on the source of generation.
8.	Figure 3.7	Rapid increase in load factor till 2027	It is observed that day peak growth rate is significant than the night peak growth rate. Accordingly, it is assumed that by 2027 day peak exceeds the night peak and until that, the system load factor will increase.
9.	Table 3.4	Impact of EV penetration. This is identified in MAED demand forecast Table 3.4	EV projection derived based on the information collected from Department of Motor Traffic for past 5 years and assumed a growth rate compared with other forms of transportation in MAED model.

Ô

entress	Section Name	PUCSL Observation/ Comment	CEB Clarification
10	4	Previous plan CEB used averag of last two years fuel prices Period concerned in this plan i not given Which period's average fue price is used in the plan?	s. weighted average of fuel prices from 2016 s 2018 have been used with more prominence to recent year to reperesen and reflect, with interview.
11.	4.1	Capital costs of plants have been decreased in both real and nominal terms	Table 4.1 does not depict variation of capital costs in real and nominal terms.
		Justification	Only capital costs of Gas turbines and Combined cycle plants have been updated considering data from recent trends.
10			Capital cost of other Power plants have been adjusted from previous plan considering local and foreign economic indicators.
12	Table 4.3	Basis of Oil prices changed (Actual spot prices was used in previous plan, where in this plan Brent prices are used)	In LTGEP 2018-2037, oil prices were presented based on Market prices and LTGEP 2020-2039 considers economic prices (cost delivered to power plant without taxes) for all fuels.
		Reason for change the basis and the breakdown of the figure (Brent price+ freight &insurance)?	All other fuel prices are based on international indexes. Hence, oil prices have been derived based on the Brent Index.
			Oil Price = Brent + Freight + Local Cost
			Local Cost were determined based on reasonable assumptions since CPC have not disclosed the actual prices upon
3	Table 4.4	previous plan was on actual prices from Lanka Coal	Coal is procured to Sri Lanka, by Lanka Coal Company and indexed to the API 4 index which is based on Richards bay of South Africa. CEB has subscriptions for the API 4 Index.
		juel	Coal Price is calculated based on weighted average from 2016-2018 of API 4 index and Handling charge of 15.16US\$/Mton to

		price (relationship to the index and any premium added)	Lakvijaya and 12.96 US\$/Mton to Foul Point.
14.	4.2: Fuel Cost -Coal	Coal capital cost increased compared to 2018-37 plan <i>Justification</i>	Question is unclear. There is no capital cost associated with fuel cost.
15	4	Generation studies- no recent studies available <i>Clarification</i>	Question is unclear. Typical Generation studies shall take 2-3 years to complete.

	Section Name	PUCSL Observation/ Comment	CEB Clarification
16	5.2.2: Committed Hydro Power Projects	Gin Ganga plant is not identified as a Committed / candidate plant Reason?	Gin Ganga Project is under the purview of Ministry of Irrigation and Water Resource Management and no proper information has been conveyed regarding the progress as they are revisiting the feasibility of the project.
17.	Table5.1:CharacteristicsofCandidateHydroPlants	Capacity cost of Seethawaka power plant is increased Reason?	According to the recent feasibility studies, configuration of the Seethawaka power plant has been reviewed and costs have been updated accordingly.
18	5.4.3.1	Government policy not fully incorporated 2025 target of Solar Sangramaya. Reason?	Optimum capacity of solar integration based on demand growth and system stability has been incorporated after system operational and transmission stability studies. This figure has been increased from 685 MW in 2018-2037 plan to 730 MW in 2020-2039 Plan.
19	5.4.3.2	60MW and 90 MW solar capacity is tendered. LOIs were not issued to the total capacity Tendered The awarded plant capacity is required to be indicated	The LTGEP is prepared for information based on 2019-01-01 and 1 MW scale Solar PV projects is one of the concepts for scattered solar development.
20	5.4.3.3	No time estimate for commissioning of Solar parks Clarification ?	Large scale Solar Developments need to conform to sensitive EIA process as large land area shall be involved. SEA has started the initial environmental studies for proposed sites including EIA process.

)

21	Table 5.9	The two columns are to be corrected as Pure cost and the cost including IDC (Interest during Constriction).	
		This shall be corrected in the final Report.	

 \bigcirc

Section Name	PUCSL Observation/ Comment	CEB Clarification
22 6.7	Coal plant construction and the feasibility studies takes 8 years Is 2023 is a feasible commissioning year for coal plant? Justification?	ne The first unit of Coal is expected to the commissioned within the LVP premises.
23 Base cas Plan: Footnote	"Battery storage is proposed to be added to the system in phase development" <i>How is this modeled in</i> <i>studies? Why is not identified</i> <i>in the plan?</i> 10% discount rate is a higher value when plan is prepared based on USD <i>Justification</i>	It is necessary for all stakeholders to work in unison and act on time. Battery storage has been identified to facilitate ramp rate controlling, frequency support services, power smoothing and shifting purposes. Initial studies identified a capacity of 50 MW in 2025 and 100 MW in 2030 to support the operational flexibility Details of exact implementation dates are to be finalized after further detailed studies. As indicated in the footnote of Table E.2, it is in the base case plan. Note that the base case plan is inclusive all footnotes indicated in the plan. In capacity expansion planning, for generation projects, economic analysis is carried out using constant currency erms. Generally, for developing countries discount rates in the range of 0%-12% are used for the economic nalysis. or LTGEP 2020-2039, 10% discount ate has been used as a general value

25	6.9.4	ENS is escalated. What is the basis of escalation	and a separate sensitivity analysis has been carried out to study the impact in the variation of discount rate. ENS has been adjusted based on the CCPI movement.
26	Executive Summary	Additional Reserve margin cost of 43 million Provide the basis of calculation of cost	The NPV value of cost difference between the two casesis USD 43 million. Case 1: RM value of Min 2.5% and Max 20% Case 2 : RM value min 10% and Max 25%
27		Coal plant dispatch during off peak is not clear. Load curves net and gross with renewables (including data) are required	verified that proposed Coal Plants would be dispatched during off peak times. However the actual operation shall be decided by the system operator based on the available capacities at the particular given time.
28	6.9.9	It has been assumed that all new ORE Plants are capable to curtail the generation when necessary. Further clarification on this statement.	have the provision for curtailment.

	Section Name	PUCSL Observation/ Comment	CEB Clarification
29	8.1	Comparison between candidate technologies used in new plan and previous plan	Candidate plants are selected as most appropriate technology, capacity and fuel type for the planning cycle.
1		Additions • 35MW NG GT • 300MW High Efficient Coal • 600MW NG	300 MW Coal plant is the same High Efficient coal plant elaborated in both LTGEP 2020-2039 and LTGEP 2018-2037.
		Omissions • 35MW & 105MW Diesel GT • 150MW Diesel CCPP • 300MW Coal	
		Reasons for changes in candidate technologies considered?	

	3	0 Table 8.1	a Lale '' Pri	
			 Lakvijaya Phase II is repeated 2024 Foul Point Phase I is repeated 2028 	i i i i i i i i i i i i i i i i i i i
			 Foul Point Phase II is repeated 2033 Foul Point Phase III is repeated 2039 	1 in Table 8.1 clearly states the locations of every New Coal Power Plants. All 8x 300 MW coal plants are do lo
	21		Lakvijaya site and Trinco Fo point. What are the oth identified sites to build the re of 3 x 300MW plants	and at Foul Point. <i>x</i> <i>in</i> <i>vul</i> <i>er</i> <i>est</i>
	31	8.2: Policy 5	If the target is for 1/3 of total energy 2500MW capacity is not adequate. Is this policy target is for 1/3 of capacity or energy Clarification for the same.	Cabinet Memorandum titled "Deciding of the Composition of Electricity of Generation of Sri Lanka"
	32	8.3	Is it possible to accommodate another 2 x 300MW plants in the existing Lakvijaya site area of 103 ha with more area for ash disposal and with a 43 ha buffer zone?	 Initial studies revealed that it is possible to accommodate 2x300 MW plants in
	33	Table 8.5	Justification? O&M of ORE is one third of thermal plants Clarifications? Give the assumptions used for running	All values related to O&M and consider
0	34	Base case	cost and capital cost	cost of candidate power plants are depicted in Table 4.2 and Annex 5.3 and are calculated accordingly.
			Are 2x300MW NG plants practically possible in 2022? Justification. (refer comments in Chapter 13)	The process was initiated in 2016 and, it is possible to commission the plants by 2022 if all stakeholders work in unison and act on time.
	35	Figure 8.7	Figure includes thermal plants Figure is not all renewables	Agreed. Will be modified accordingly.
	36	Base Case	Years considered for fuel conversion to NG in Westcoast and Sojitz plants are not given	Please refer footnote of Table 8.1 which clearly states the conversion years of each power plant.

•

0

Se. No	Section Name	PUCSL Observation/ Comment	CEB Clarification
37.	Figure 10.2	Results in Oct 2016 given. Actual SOx emissions of LVPS is higher than this.	This data is based on test results carried out by a third party institute (NBRO) in October 2016. Emissions of the power plant under normal operating conditions are within Sri Lankan standards. Also the recent average emissions under normal operating conditions are represented by the values in this report in October 2016.
38.	10.4	Close loop cooling cost	Sea water cooling is proposed for coal plants at identified locations and the cost is included in capital cost.
39.	10.4	Norm for low Sulphur coal is : S content < 1%. The coal used in LVPS has more than 1% Sulphur content. If no FGD Low Sulphur coal is required.	
40.	10.7	2016 Emission factor for LVPS is used	operating conditions are represented by the values in the third party verified report in October 2016. Also maximum emissions of power plant under norma operating conditions do not exceed Sr Lankan standards.
41.	DSM	DSM programmes are not accounted for in demand forecast	Chapter 3 Section 3.8 mentioned the reasons for non-consideration o demand reduction due to DSM program in long term expansion planning
			It is foreseen that there may be considerable practical restrictions of smoother implementation on the DSM measures as it need very stron- commitment from all the stakeholder which is lacking in practice we have experienced. The analysis indicates that the benefits could be obtained and implementation should be ensured be policy decisions by the Government Hence, if DSM Case is selected as the Base Case Plan it may lead to under estimation of the requirement of pow and inadequate development of the

42.	10.9	Coal dust, fugitive emissions and high ground water extraction not addressed	streamline and address environmental and social impacts during the implementation stage of power projects. Closed conveyors and Closed coal storages shall minimize the issue on coal dust. Other mattern
			during the EIA process of every power project.

Г

 (\Box)

T

Se. No	Section Name	PUCSL Observation/ Comment	CEB Clarification
44.	13.1.3 Case 1: Delays of NG fired power plants till 2022:	This is no longer a contingency, but the reality situation. Now there is possibility that these plants getting delayed even beyond 2022. This should be considered as a contingency	
45.	13.1.3 Case 1: Delays of NG fired power plants till 2022:	In 2020 only one 300MW base load power plant is due as per the previous plan. There is a contingency requirement of 345 MW in new plan?	Different contingency scenarios could be analyzed based on reasonable assumptions as and when required. In addition to the delay of 300MW combined cycle plant, there are other factor such as changes in demand forecast, plant parameters including commissioning dates can affect the capacity requirement. The security criteria considered in the security
	Table 13.6: Breakdown of the capacity additions identified for 2019- 2021 period	2018-37 identify 150 MW requirement for 2019 in simultaneous occurrence of 3 risk events, here it is considered as required in single contingency event (plant delay).	minimum reserve margin and 1.5% of maximum LOLP limit. The total contingency capacity requirement identified by LTGEP 2020-2039 for the year 2020 is 345MW (Table E.2). The table 13.6 will be corrected to eflect the total capacity identified by TGEP 2020-2039 for the year 2020.

47.	13.2.2	Plant requirements for the following cases not Identified	Contingency analysis has been carried out for most likely worst-case scenarios. Different contingency
		What is the requirements if hydro reduction and LVPS out?	scenarios could be analyzed based on reasonable assumptions as and when required. Final decisions on
		What is the requirement if plant delay and LVPS out?	111 1