

PUBLIC UTILITIES COMMISSION OF SRI LANKA

DECISION ON LEAST COST LONG TERM GENERATION EXPANSION PLAN 2018-2037

This Document contains the decision of the Commission on the Least Cost Long Term Generation Expansion Plan for the period of 2018-2037, prepared by the Ceylon Electricity Board (Transmission Licensee operating under License No EL/T/09-002) in terms of Section 43 of the Sri Lanka Electricity Act No. 20 of 2009 as amended by section 13 of Sri Lanka Electricity (amendment) Act No. 31 of 2013

Table of Contents

DECIS	ION ON LEAST COST LONG TERM GENERATION EXPANSION PLAN 2018-2037	2
1.	Introduction	2
2.	Generation Planning Code	2
3.	Generation Planning Tool	3
4.	Demand Forecast	3
5.	Candidate Plants Sizes and Technologies	4
6.	Economic Costs	5
7.	Fuel Costs	6
8.	Externality Cost	8
9.	CEB Base case	9
10.	Scenarios	12
11.	Energy mix considerations	14
12.	Decision on LCLTGEP 2018-2037	15
Annex	kure	19
Sun	nmary of the comments received at Stakeholder Consultations and the Commission's	
Res	ponses	19

DECISION ON LEAST COST LONG TERM GENERATION EXPANSION PLAN 2018-2037

1. Introduction

Section 43 of the Sri Lanka Electricity Act No. 20 of 2009 as amended by section 13 of Sri Lanka Electricity (amendment) Act No. 31 of 2013, requires the Transmission Licensee to prepare and submit the Least Cost Long Term Generation Expansion Plan (LCLTGEP) for approval of the Public Utilities Commission of Sri Lanka (Commission). Accordingly Ceylon Electricity Board has submitted their plan on 5th May 2017. Prior to this the input parameters used in preparation of the draft plan was submitted for Commission's information on 6th February 2017. Those input parameters were published for stakeholder comments from 17th February to 22nd March. Subsequently, the Commission has conducted a wide stakeholder consultation on the submitted LCLTGEP (*Annex*: summary of comments from 9th May 2017 to 15th June 2017 and the oral session for comments was held on 15th June 2017.

2. Generation Planning Code

The Transmission Licensee was required to follow the Least Cost Generation Expansion Planning Code approved and issued by the Commission in April 2011. In preparation of the LCLTGEP, the said planning code was adhered and followed by the Transmission Licensee, except for the following areas;

• Reserve Margin

The planning code defined 10% - 35% window is replaced with draft Grid Code figures of 2.5% - 20%, which might result in lower reliability levels. However, CEB has violated these new Reserve Margin criteria (upper limit) at all the years (even at the driest period in 2028), in the proposed base case plan sent for approval.

• Loss of Load Probability (LOLP)

The planning code defined 0.5%-1.5%, and the lower limit of 0.5% is consistently overlooked in the base case that may result in over investment.

• Cost of Energy Not Served

This is set at 0.5 USD/kWh in the planning code and CEB has escalated this to 0.663 USD/kWh for the proposed plan to accommodate for inflation since 2011.

3. Generation Planning Tool

CEB uses mainly the Wien Automatic System Planning (WASP IV) software to derive the generation plans. This software model uses an objective function to minimize total cost B, where;

$$B_{j} = \sum_{t=1}^{T} \left(I_{j,t} - S_{j,t} + F_{j,t} + L_{j,t} + M_{j,t} + O_{j,t} \right)$$

- I Capital Investment Costs
- S Salvage Value of Investment costs
- F Fuel Costs
- L Fuel Inventory Costs
- M-Non-fuel O & M Costs
- O Cost of Energy Not Served
- j Plant Number
- t Period Number
- T Planning Period

The model has the capability to optimize the selection of future generation plant technologies and plant sizes to meet the projected demand at the lowest cost. One main shortcoming of the software is the inadequate modelling of renewable energy, where CEB has the practice of adjusting the forecast demand to accommodate a pre-planned set of new renewable energy plants (both their energy and peak demand contributions).

As stated above, the WASP model fails to optimize the Renewable Energy technologies, since those are not dispatchable, and CEB shall explore new models to rectify this issue. CEB has already purchased OPTGEN software to rectify this issue, and thus this shortcoming can be rectified in future plans.

4. Demand Forecast

Based on econometric models, CEB has assumed a 5.0% energy demand growth and a 4.5% peak demand growth rate for the period 2018-2037 in the proposed LCLTGEP, while assuming the load factor to increase from current 66.3% to 72.4% by year 2030. As pointed out by few stakeholders, this assumption on load factor improvement resulting off-peak demand increase(45% of peak load

in 2017 to 55% of peak demand in 2037), is unrealistic considering the past off-peak demand growth rates (2%-3% during last five years). The assumptions on the off-peak demand is critical if the resulting plan is to add more base load plants like coal power plants to system. With the absorption of Other Renewable Energy (ORE) sources to the system, CEB is assuming the off-peak demand to grow from the 1,100MW (current level) to about 1,700 MW by 2037, which leaves very little room for coal plant additions to the system (Existing coal plant capacity is 900MW). Even with the planned 600MW (2025 to 2027) pumped storage hydro plant, the situation does not improve substantially.

The network losses assumed in the demand forecast are higher than loss targets allowed by the Commission for 2016-2020, as stated in its Decision on Revenue Caps and Bulk Supply Tariff 2016-2020. However, considering its low impact on the generation plan (especially for the next decade), no changes to the demand is considered in the approval process.

5. Candidate Plants Sizes and Technologies

As stated above, the WASP software package used by CEB for the preparation of the plan seems not capable of optimizing the size and timing of ORE plant additions, hence they are added outside the optimization equation, after considering the specific costs, resource potential, development speed and other transmission constraints. Similarly, in case of large hydro plants, they are added to the plan (even when the specific costs are as high as 59.41 LKR/kWh in case of Ging gaga project), considering other economic benefits. CEB has used 150MW, 300MW and 600 MW plant capacity options for base load and intermittent duty needs of the system in future.

Coal fired plants (both subcritical and super critical plants) and Natural Gas (NG) fired combined cycle plants are having fairly close specific costs (Table 1) and thus require close attention. Both coal technologies assume using coal with lower quality (lower quality than that is used in the existing Puttlam coal plant), and thus potentially result in lower efficiencies and relatively higher adverse environmental impacts (high ash content, etc). Out of the two coal technologies, only 600 MW supercritical coal technology was considered after 2028 in the base case plan. This appears to be contradicting the least cost principles (if externality costs are not considered in the plan). One reason for the postponement of the super critical plant is the large unit size (600 MW) of the super critical plant, which may exceed the reserve margin criteria at first few years of the planning period. In addition the pump storage hydro plant is advanced to accommodate all the proposed coal plant developments in the proposed 'base' case.

	CEB Base Case	2016 Average	2016 Q4
	Prices	Prices	Average Prices
Fuel Price (USD/MMBtu)	10	8.36	9.09
150MW CCP – NG (USCts/kWh)	9.64	8.47	8.99
300MW CCP – NG (USCts/kWh)	9.59	8.42	8.94
Fuel Price (USD/MT)	69.7	80.9	110.5
300MW Coal (USCts/kWh)	7.20	7.62	8.75
600MW Coal (USCts/kWh)	7.31	7.70	8.74

Table 1: Specific cost at 80% plant factor

In case of NG plants, only 300MW NG plants are considered for optimization in the 'No future coal power development' case, thus compromising on the least cost principles; considering 150MW NG option could reduce cost.

6. Economic Costs

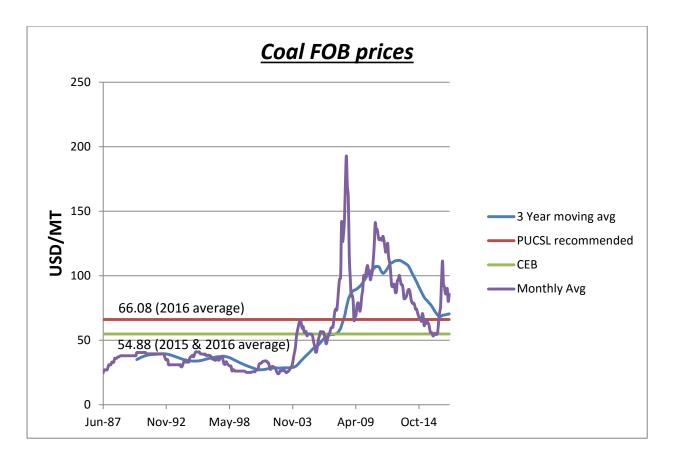
The provisions of the Sri Lanka Electricity Act require minimization of **Economic Costs** in the planning process. In this context CEB has taken an effort to include border prices in to the planning process (i.e. excluding tax and other levies that distort prices). However, CEB has not considered few critical components of economic costs (most of which are outside the planning boundaries under the Planning Code); such as a) environmental externalities, b) local employment and other economic benefits of some technologies, c) lower currency risks attached to indigenous technologies d) pertinent cost reduction trends on certain ORE technologies e) variances in transmission costs due to locational advantages of certain technologies and f) indigenous sources that improve energy security. Most of these factors are difficult to quantify and thus highly debatable. However, when certain key options are very close and competing in terms of specific costs, these factors have to be considered at least qualitative basis. For example NG options and the subcritical coal options only differ by 0.8 USD Cents/kWh as additional externality cost for coal technologies, and thus the externality figures, etc can play a key role to differ the planning decisions.

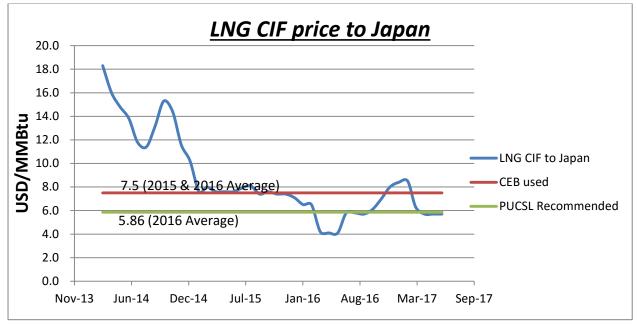
7. Fuel Costs

CEB has based its fuel cost assumption from Lanka Coal (coal price for Puttlam coal plant), Ceylon Petroleum Corporation (oil prices) and Japanese Crude Cocktail (JCC) basis (NG prices). However, those costs are not fully reflected in the published Platts (Singapore), JCC and NEWC indexes (Australian coal index published by www.Globalcoal.com) at the end of the year 2016. During the presentation on the draft LCLTGEP by CEB, it was revealed that it relied on two year (2015 and 2016) average market prices for fuel cost estimates. Using such long term (2015 and 2016) average, when the current prices are substantially different (Table 2) appears to misrepresent the actual pricing at the time of preparation of the plan. Most notably, they have used the existing market prices for oil products (which is with taxes, etc and excessively higher than the border prices).

Coal	NG	Auto Diesel	Furnace
\$/MT	\$/MMBtu	\$/bbl	Oil
			\$/bbl
69.7	10.0	105.3	88.6
81.0	8.4	53.6	46.5
	\$/МТ 69.7	\$/MT \$/MMBtu 69.7 10.0	\$/MT \$/MMBtu \$/bbl 69.7 10.0 105.3

Table 2: Fuel Prices


*Sources for Fuel Costs:


• Coal: NEWC published by Globalcoal.com, unloading costs (14.82 \$/MT) from Lanka Coal Ltd.

 Liquefied Natural Gas (LNG): JCC published by http://www.paj.gr.jp – Petroleum Association of Japan(PAJ), 2.5 \$/MMBtu taken as regasification and handling costs

• Oil : PLATTS, handling costs from Ceylon Petroleum Corporation

The PUCSL recommended fuel prices compared to long term price (spot LNG prices for Japan (METI website) and Australian coal prices (www.Indexmundi.com)) trends are shown below. The 2016 average fuel prices were recommended considering the recent step increase in coal prices and the recent gradual reduction in LNG prices. In case of coal; CEB coal price (FOB) assumption is clearly below the current price levels, as opposed to LNG; where CEB price is higher than the current price level. When comparing with the three year moving average prices for coal, assuming a price well below the moving average price (as proposed by CEB) is not recommended. In case of LNG, long term Asian market prices are not available and thus PUCSL recommended price (8.4 \$/MMBtu) for NG which is similar to the recommendations made by Petroleum Resource Development Secretariat, (8.3 \$/MMBtu) could be used.

8. Externality Cost

CEB has not included any externality cost in their scenarios of the draft LCLTGEP 2018-2037, thus as stressed by many stakeholders, does not reflect the true economic costs of power generation. Ideally, externalities depend heavily on the site specific environmental conditions, plant technology and fuel used. Thus site specific studies are required to reliably determine the figured on externality cost for a particular technology. Lack of such data in Sri Lankan context is a main shortcoming. Yet it is not recommended to fully ignore such costs, just because accurate specific data is not available. Several contemporary international studies are available and could be used in the analysis as scenarios, to arrive at a decision on the ultimate plan. In addition, a breakeven analysis could be carried out to work out the breakeven externality cost figure that would materially change the plant selection options in the software.

As shown in Table 3 below, there is a wide range for the externality costs for each fuel and related technology.

Study	Externality	Cost (US Cei	nts/kWh)
	Coal	NG	Oil
Environmental Accounting for Pollution in the United States	2.8	0.85	2.03
Economy - 2011			
Health & Environmental Costs of Electricity Generation in	6	0.8	
Minnesota - 2010			
INCORPORATING SOCIAL AND ENVIRONMENTAL CONCERNS IN	7.6	2.4	6.8
LONG TERM ELECTRICITY GENERATION EXPANSION PLANNING			
IN SRI LANKA			
The True Cost of Electric Power - 2012	0.2-12.6	0.001-	-
		0.578	
Environmental Externalities from Electric Power Generation, The	5.4	1.7	5.9
Case of RCREEE Member States – 2013 (mean value)			

Table 3: Externality Costs

As stated above, it is critical to note that a mere 1.2 US Cents/kWh difference in externality costs is sufficient to tilt a coal dominant generation plan to a NG dominated plan, and all the recent studies reveal higher gaps in externality costs (between coal and NG). CEB was asked to use the

'Environmental Externalities from Electric Power Generation, The Case of RCREEE Member States – 2013 (**mean value**)' as externality cost in the scenarios requested by the Commission, those results and the Commissions' own analysis supports this conclusion. Considering site specific nature of externality costs; national adjustments for population density, national economic conditions, etc were not made.

9. CEB Base case

CEB recommends the following case as the preferred case for Commissions approval;

YEAR		RENEWABLE	ADDITIONS	THERML ADDITIONS	THERMAL RETIREMENTS
2018	Mini Hydro Biomass	o 15 MW Solar 160 MW		100 MW Furnace Oil fired Power Plant * 70 MW Furnace Oil fired Power Plant *	8x6.13 MW Asia Power
				150 MW Furnace Oil fired Power Plant *	
	Major Hydro	122 MW	(Uma Oya HPP)	2x35 MW Gas Turbine	
2019	Mini Hydro	15 MW	Wind 50 MW	1x300 MW Natural Gas fired Combined Cycle Power Plant	-
	Solar	95 MW	Biomass 5 MW	– Western Region ⁺	
	Major Hydro	35 MW	(Broadlands HPP)	1x35 MW Gas Turbine	6x5 MW Northern Power
		15 MW	(Thalpitigala HPP)		
2020	Wind	100 MW	(Mannar Wind Park)		
	Mini Hydro	15 MW	Wind 120 MW		
	Solar	105 MW	Biomass 5 MW		
2021	Mini Hydro	10 MW	Wind 75 MW	1x300 MW Natural Gas fired Combined Cycle Power	4x17 MW Kelanitissa Gas Turbines
	Solar	55 MW	Biomass 5 MW	Plant – Western Region	
	Major Hydro	30 MW	(Moragolla HPP)		

Table 4: Base Case plan submitted by CEB

		20 MW	(Seethawaka)		
2022	HPP)				
		20 MW	(Gin Ganga HPP)		
	Mini Hydro	10 MW	Wind 50 MW		
	Solar	6 MW	Biomass 5 MW		
	Mini Hydro	10 MW	Wind 60 MW	1x300 MW New Coal Power Plant	115 MW Gas Turbine**
	Solar	55 MW	Biomass 5 MW	(Change to Super critical will be evaluated)	4x9 MW Sapugaskanda Diesel Ext.** 163 MW
2023					Sojitz Kelanitissa Combined Cycle Plant
				163 MW Combined Cycle Power Plant (KPS–2)	
2024	Mini Hydro	10 MW	Wind 45 MW	1x300 MW New Coal Power Plant	4x18 MW Sapugaskanda Diesel
	Solar	55 MW	Biomass 5 MW	(Change to Super critical will be evaluated)	
	Major Hydro	200 MW	(Pumped Storage Power	1x300 MW New Coal Power Plant	
2025			Plant)	(Change to Super critical will be evaluated)	4x9 MW Sapugaskanda Diesel Ext. 4x15
	Mini Hydro	10 MW	Wind 85 MW	(****)	MW CEB Barge Power Plant
	Solar	104 MW	Biomass 5 MW		
	Major Hydro	200 MW	(Pumped Storage Power		
2026			Plant)	-	-
	Mini Hydro	10 MW	Solar 55 MW		
	Biomass	5 MW			
	Major Hydro	200 MW	(Pumped Storage Power		
2027			Plant)	_	-
	Mini Hydro	10 MW	Wind 25 MW		
	Solar	54 MW	Biomass 5 MW		
2028	Mini Hydro	10 MW	Wind 45 MW	1x600 MW New Supercritical Coal Power Plant	-
	Solar	105 MW	Biomass 5 MW		

2029	Mini Hydro	10 MW	Wind 25 MW	-	-
	Solar	54 MW	Biomass 5 MW		
2030	Mini Hydro	10 MW	Wind 70 MW		-
	Solar	55 MW	Biomass 5 MW		
2031	Mini Hydro	10 MW	Wind 35 MW	1x600 MW New Supercritical Coal Power Plant	_
	Solar	54 MW	Biomass 5 MW		
2032	Mini Hydro	10 MW	Wind 45 MW	-	-
	Solar	55 MW			
	Mini Hydro	10 MW	Wind 70 MW	2x300 MW Natural Gas fired Combined Cycle Power	165 MW Combined Cycle Plant (KPS) 163 MW
2033	Solar	54 MW	Biomass 5 MW	Plants -Western Region	Combined Cycle Plant
					(KPS- 2)
2034	Mini Hydro	10 MW	Wind 70 MW		_
2034	Solar	55 MW			
2035	Mini Hydro	10 MW	Wind 70 MW	1x600 MW New Supercritical Coal Power Plant	300MW West Coast Combined Cycle Power
	Solar	54 MW	Biomass 5 MW		Plant
2036	Mini Hydro	10 MW	Wind 95 MW	1x300 MW Natural Gas fired Combined Cycle Power	-
	Solar	55 MW		Plant -Western Region	
2037	Mini Hydro	10 MW	Wind 70 MW	-	-
	Solar	104 MW	Biomass 5 MW		

As indicated by many stakeholders, the amount of renewables included in the plan is inadequate to meet the policy targets set by the Government (latest target is 70% of generation by 2030). As per the generation mix forecast for the period 2018-2037, Renewable energy contribution remains within 40-60% of the total generation, while keeping Other Renewable Energy to 20% in 2020 and beyond. Also few stakeholders have raised the issue of keeping an additional 5% reserve margin to accommodate ORE in future, and thus increasing the Reserve Margin artificially (leading to higher investments), further network studies and use of new planning software is expected to rectify this issue. Overall, the allowed ORE additions (906MW within 2018-2022) in the plan, is high when the current total installation of 544 MW is considered and thus shall be further increased only after carrying out specific network integration studies.

CEB has selected (advanced) the Pumped storage power plant 2025 onwards, overlooking the least cost criterion to accommodate more coal power plants that require running round the clock (i.e. to increase the off peak demand artificially). In addition, the super critical coal technology, which is expensive than the subcritical coal technology is selected after year 2028, overlooking the least cost criterion. There were many stakeholder arguments for and against the predominantly coal based plan proposed by CEB, considering national policy targets, Paris Agreement and NDCs, low cost power to consumers, etc.

Also the LOLP value is well below the minimum requirement set by the planning Code (0.5%) for year 2019 and beyond, which indicates possible overinvestment in the plan.

10. Scenarios

As stated above commission requested several scenarios (fuel prices and externality figures) to check the robustness of the base case plan as submitted by the CEB, while the results show varying fuel and technology selection due to the cost parameter changes, the resent value of the objective function will show the exact difference in costs as a result of the changes in plant selection. Meanwhile, Commission also conducted its own scenario analysis and the results are shown below (Table 5).

The cumulative Present Value (PV) up to year 2037 was checked for the CEB base case plan at revised (2016 year average fuel prices) fuel prices and with externality costs (included as variable O & M cost). In addition a Revised case (at CEB base case demand forecast) that had forced conditions as listed below was studied at CEB proposed fuel prices, with externality costs and with revised fuel prices (both with and without externality costs). The results of the scenario (PV cost up to year 2037) is shown below. The PV cost shown here is excluding the PV cost of Other Renewable Energy which amounts to USD Mn 2,691 over the period 2018-2037.

Table 5: Cumulative PV up to year 2037

Scenario	PV Cost at CEB proposed fuel prices	PV Cost at 2016 year average fuel prices
CEB Base Case	11,877	10,900
CEB Base Case with Externalities	15,068	13,961
CEB No Further Coal Development Case	12,422	10,747
Revised Case	-	10,645
Revised Case with Externalities	-	12,833

(USD Mn)

CEB base case at revised fuel prices has a higher cumulative PV up to year 2037 (USD Mn 10,900) as compared to Revised case (USD Mn 10,645). Revised case contain only Gas Turbine and NG plants as future thermal plant additions, since coal with pumped storage hydro plant combination results in a higher PV.

Forced conditions of the revised case:

- 300MW Coal Plants (Sub Critical) were not considered for the optimization due to low efficiency and high emissions
- 600MW Super Critical Coal Plant option was allowed from 2025 onwards considering a feasible timeframe for implementation and Pump Storage Plant option was forced if Super Critical coal plants are selected
- 35MW Diesel Gas Turbines have been restricted for optimization after 2020 due to emission restrictions in the load centres

Table 6: Externality cost included in the analysis

Fuel	Coal	Natural Gas	Auto Diesel	Furnace Oil
Externality cost (US Cents/kWh)	3	0.49	4	4

Source for externality cost: Environmental Externalities from Electric Power Generation (The Case of RCREEE Member States) – September 2013 (minimum Value)

Considering the close price range and high impact of any externality costs, CEB base case was further analyzed with 2016 average fuel prices and externalities. When the 2016 average fuel prices are used the 'Revised' Case has a lower PV up to 2037 (USD Mn 10,645) as compared to CEB base case with 2016 average fuel prices (USD Mn 10,900), and when externalities are considered, the Revised case is the least cost with PV USD MN 12,833 up to year 2037. Revised case has no further coal plant additions in the planning horizon (2018-2037)

Thus the 'Revised' case (where supercritical coal plants are not selected) is the lowest cost at the recommended fuel prices by the Commission and if externality (damage) costs are included that case clearly have the Least Economic Cost and thus in terms of Section 43 of the Sri Lanka Electricity Act No. 20 of 2009 as amended by section 13 of Sri Lanka Electricity (amendment) Act No. 31 of 2013, 'Revised' case shall be selected.

11. Energy mix considerations

Sri Lanka has built one coal power station (Norachcholai 900 MW) and relies on it to supply about 40% of the current demand. Also Natural Gas deposits have been discovered in the North- Western sea area of the country and any development of that resource would depend heavily on the prospective demand from the power sector. Anyhow, coal is expected to remain a main source of energy till 2030 (where it will still supply about 20% of the demand), even without any further coal plant development. The assumptions on the externality costs shall be further validated with site/ country specific studies as well.

12. Decision on LCLTGEP 2018-2037

Section 43 of the Sri Lanka Electricity Act No. 20 of 2009 as amended by section 13 of Sri Lanka Electricity (amendment) Act No. 31 of 2013, and the current fuel price trends, Commission decided to use one year (2016) average fuel prices and include externality costs (Table 6) in the variable O&M cost of the power plants to arrive at the plan with least economic costs. The approved Generation Expansion plan for the period 2018-2037 is given in **Table 7**.

The Transmission Licensee (CEB) is hereby directed to commence procurement process as per the provisions of Section 43 of the Sri Lanka Electricity Act No. 20 of 2009 as amended by section 13 of Sri Lanka Electricity (amendment) Act No. 31 of 2013, for the new plants within the period 2018-2028 and to conduct relevant network studies, and to revisit and refine the input parameters including the following, when preparing the LCLTGEP 2020-2039 that is to be submitted for Commissions' approval on or before 30th April 2019.

- > Demand forecast (specially the off peak demand and load factor)
- Investment plan with ORE absorption levels to achieve 60% of electricity generation from Renewable energy sources (including Large Hydro plants) by year 2030.
- > Externality costs of generating options; country and location specific studies
- > Adhering the network loss targets set by the Commission

Table 7: Approved LCLTGEP 2018-2037

YEAR		RENEWABLE	ADDITIONS	THERMAL ADDITIONS	THERMAL RETIREMENTS
		1			
2010	Mini Hydro	15 MW	Solar 160 MW	100 MW Furnace Oil fired	8x6.13 MW Asia Power
2018	Biomass	5 MW		Power Plant * 70 MW	
				Furnace Oil fired Power	
				Plant * 150 MW Furnace Oil	
				fired Power Plant *	
	Major Hydro	122 MW	(Uma Oya HPP)	2x35 MW Gas Turbine	
2019	Mini Hydro	15 MW	Wind 50 MW	1x300 MW Natural Gas fired	-
	Solar	95 MW	Biomass 5 MW	Combined Cycle Power Plant –	
				Western Region ⁺	
	Major Hydro	35 MW	(Broadlands HPP)		
		15 MW	(Thalpitigala HPP)		
2020	Wind	100 MW	(Mannar Wind Park)	1x35 MW Gas Turbine	6x5 MW Northern Power
	Mini Hydro	15 MW	Wind 120 MW		
	Solar	105 MW	Biomass 5 MW		
2021	Mini Hydro	10 MW	Wind 75 MW	1x150 MW Natural Gas fired	4x17 MW Kelanitissa Gas Turbines
	Solar	55 MW	Biomass 5 MW	Combined Cycle Power Plant –	
				Western Region	
	Major Hydro	30 MW	(Moragolla HPP)		
		20 MW	(Seethawaka HPP)		
2022		20 MW	(Gin Ganga HPP)		
	Mini Hydro	10 MW	Wind 50 MW		

	Solar	6 MW	Biomass 5 MW		
	Mini Hydro	10 MW	Wind 60 MW	1x300 MW Natural Gas fired	115 MW Gas Turbine**
	Solar	55 MW	Biomass 5 MW	Combined Cycle Power Plant	4x9 MW Sapugaskanda Diesel Ext.**
2023					163 MW Sojitz Kelanitissa Combined
				163 MW Combined Cycle Power	Cycle Plant
				Plant (KPS–2)	
2024	Mini Hydro	10 MW	Wind 45 MW	1x300 MW Natural Gas fired	4x18 MW Sapugaskanda Diesel
	Solar	55 MW	Biomass 5 MW	Combined Cycle Power Plant	
	Mini Hydro	10 MW	Wind 85 MW	1x300 MW Natural Gas fired	
2025	Solar	104 MW	Biomass 5 MW	Combined Cycle Power Plant	4x9 MW Sapugaskanda Diesel Ext.
					4x15 MW CEB Barge Power Plant
	Mini Hydro	10 MW	Solar 55 MW	1x150 MW Natural Gas fired	
2026	Biomass	5 MW		Combined Cycle Power Plant	-
	Mini Hydro	10 MW	Wind 25 MW	1x150 MW Natural Gas fired	
2027	Solar	54 MW	Biomass 5 MW	Combined Cycle Power Plant	-
2028	Mini Hydro	10 MW	Wind 45 MW	1x300 MW Natural Gas fired	-
	Solar	105 MW	Biomass 5 MW	Combined Cycle Power Plant	
2029	Mini Hydro	10 MW	Wind 25 MW	1x150 MW Natural Gas fired	-
	Solar	54 MW	Biomass 5 MW	Combined Cycle Power Plant	
2030	Mini Hydro	10 MW	Wind 70 MW	1x150 MW Natural Gas fired	-
	Solar	55 MW	Biomass 5 MW	Combined Cycle Power Plant	
2031	Mini Hydro	10 MW	Wind 35 MW	1x300 MW Natural Gas fired	-
	Solar	54 MW	Biomass 5 MW	Combined Cycle Power Plant	
2032	Mini Hydro	10 MW	Wind 45 MW	1x300 MW Natural Gas fired	-
	Solar	55 MW		Combined Cycle Power Plant	

	Mini Hydro	10 MW	Wind 70 MW	2x300 MW Natural Gas fired	165 MW Combined Cycle Plant (KPS) 163
2033	Solar	54 MW	Biomass 5 MW	Combined Cycle Power Plants	MW Combined Cycle Plant
					(KPS- 2)
2034	Mini Hydro	10 MW	Wind 70 MW	1x150 MW Natural Gas fired	
2034	Solar	55 MW		Combined Cycle Power Plant	_
2035	Mini Hydro	10 MW	Wind 70 MW	2x300 MW Natural Gas fired	300MW West Coast Combined Cycle
	Solar	54 MW	Biomass 5 MW	Combined Cycle Power Plant	Power Plant
2036	Mini Hydro	10 MW	Wind 95 MW	1x300 MW Natural Gas fired	-
	Solar	55 MW		Combined Cycle Power Plant	
2037	Mini Hydro	10 MW	Wind 70 MW	1x300 MW Natural Gas fired	-
	Solar	104 MW	Biomass 5 MW	Combined Cycle Power Plant	

Annexure

Summary of the comments received at Stakeholder Consultations and the Commission's Responses

Dear Stakeholder, we value and appreciate your effort in participating in the public consultation process of Least Cost Long Term Generation Expansion Plan (LCLTGEP 2018-37). We have strongly considered the comments, proposals and suggestions that you have made and revised the submitted plan accommodating major changes given the limited time phase. However, some comments, proposals and suggestions will be incorporated in developing the next LCLTGEP due to time constraints in approving the LCLTGEP 2018-37 for fast implementation.

Summarized Comment	Commenter(s)	Response of the Commission
Share of renewable energy	1. Dr. Anil Cabraal	The Commission has noted that the total renewable energy share of approved plan
considered in this plan is	2. Dr. Janaka Ratnasiri	(including large hydro) is expected to be within 35 percent to 50 percent
not adequate	3. Environmental Foundation	(depending on hydro condition) during the planning period of 2018-2037.
- Non adherence to	Limited	
government policies/	4. Mr. K C Somaratne	The Commission has also noted that the plan is not fully complied with the national
Commitments under Paris	5. Ms. Neela Marikkar	renewable targets (eg. Paris Agreement and Surya Bala Sangamaya), as other
Agreement on Climate	6. Mr. Parakrama Jayasinghe	renewable energy (ORE) integration capability of the system is limited by the
Change/ targets under	7. Small Hydro Power	stability, operational and economic constraints.
Surya Bala Sangramaya	Developers Association	
	8. Solar Industries Association	CEB has projected Other Renewable Energy (ORE) according to the study of
	9. Mr. Vidhura Ralapanawa	"Integration of Renewable Based generation into Sri Lankan Grid 2017-2028".
	10. Prof. Praveen Aberatne	
	11. Mr. Mayura Botheju	As per the study, optimum ORE capacity has been integrated into the system up to
	12. SLYCAN Trust	2028 (20% energy share) and continued throughout the planning horizon.
	13. Mr Gnanalingam	
	14. Strategic Enterprises	The Commission noted that the set targets under Soorya Bala Sangramaya for the
	Management Agency	year 2020 (200MW) has been considered in preparing the plan, but the target for

	15. Mr. Clifford Regis	the year 2025 (1000MW) has not been considered in the plan.
	 Renewable Energy Developers Association (REDA) Mr. Nimal Liyanage 	Therefore the Commission will strictly consider the observation to be incorporated in approving future generation plans.
In order to identify true the economic cost, costs of externalities should also be	 Dr. Anil Cabraal Mr. Hasala Dharmawardhana 	The Commission noted the comment with appreciation and incorporated in the approved plan.
considered. -Impact of pollutants other	 Mr. Ranjith Vithanage Environmental Foundation 	The approved LCLTGEP 2018 -37 considered the externality costs.
than gases also should be considered. -Identify Sri Lanka specific	Limited 5. Dr. Janaka Ratnasiri 6. Ms. Neela Marikkar	Reference for costs of externalities: The Case of RCREEE Member States September 2013.
values prior to next planning cycle	 Mr. Parakrama Jayasinghe Prof. Praveen Aberatne Mr. Nimal Liyanage 	At the same time, the Commission agrees that it is required to consider location specific damage costs. But, such studies are not available locally at present and time limitations do not allow the Commission to do fresh studies at this point.
		Thus, the Commission will discuss with the CEB to develop studies to identify values that are most relevant to Sri Lanka to be incorporated in future LCLTGEPs.
Cost of renewable based generation become low cost compared to imported	 Ms. Neela Marikkar Mr. Parakrama Jayasinghe Small Hydro Power Deve. 	The Commission agrees. The approved plan has not considered the impact of rupee depreciation due to limitation of time as it requires lengthy studies.
fuel based generation due to the impact of rupee depreciation	 Mr. Vidhura Ralapanawa Mr. Mayura Botheju Mr. Nimal Liyanage 	The Commission has already initiated to revise the planning code and will consider the mentioned comment when revising the code.
		The future generation plans would be prepared adhering to the new planning code.
WASP is designed for planning base load plants and not suitable to analyze	 Dr Anil Cabraal Mr. Parakrama Jayasinghe Mr. Vidhura Ralapanawa 	The Commission agrees that the present planning software has its own limitations on modelling renewable energy and transmission costs.
new renewable technologies and hence outdated	 Strategic Enterprise Management Agency 	CEB has already communicated to the Commission that they are in the process of building capacity for the staff to use the OptGen software in next generation planning. The latest software allows CEB in modelling variable renewable energy as

		well as transmission costs.
		The Commission encourages the licensee to adopt and use the best practices in the world to develop the future LCLTGEPs.
Generation Planning Code	1. Dr. Anil Cabraal	Noted
in the Grid Code is no	2. Mr. Parakrama Jayasinghe	
longer appropriate in	3. Mr. Vidhura Ralapanawa	The Commission has already initiated to revise the planning code and will consider
preparing the Long-Term	4. SLYCAN Trust	the mentioned comment when revising the code.
Generation Expansion Plan		
2018-2037 as it bound by		The future generation plans would be prepared adhering to the new planning code.
the limitations of WASP.		
Problems in fuel prices used	1. SC	The Commission agrees with your observation. The approved LCLTGEP considered
for the preparation of the	2. Mr. Vidura ralapanawa	average fuel prices of the year 2016 from the sources below;
draft plan.		
-Different from		-Coal price (81.0 USD/MT); NEWC as published by Globalcoal.com + (shipping+
international price indices		insurance and lightering costs) as invoiced by Lanka Coal for the respective period
-Same reference period		
should be used for all fuel		-Oil Price(LSFO:46.5USD/bbl, diesel : 53.6USD/bbl); Singapore platts + freight and
types		terminal charges from CPC/CPSTL for the respective period
		-NG price(8.4 USD/MMBtu); 14% of Petroleum Association of Japan, monthly crude
		oil import cost for the respective period + USD 2.5/MMBtu terminal costs
		Fuel prices will be approved by the Commission at input data consultation prior to
		prepare future generation plans.
Coal is the cheapest option	1. Eng M V R Perera	Noted
and are required for	2. Mr. W A D R Jayawardene	
economic development	3. Mr. Gayan Heenatiyana	The approved LCLTGEP 2018 -37 considered the externality costs (social and
	5. With Gayan Heenadiyarid	environment costs) and power plants qualify according to the least cost principals
		were approved.
Cancellation of Sampur Coal	1. Prof. Kumar David	Noted.
plant is costly and	1. TTOL Rumai David	
technically unsound		Cancellation of Sampur Coal power plant was a decision by the Government.
centreally unsound		cancellation of sampli coal power plant was a decision by the dovernment.

decision. Propose to go ahead with proposed coal plants but gradually shift to other technologies		The approved LCLTGEP 2018 -37 considered the externality costs (social and environment costs) and power plants qualify according to the least cost principals were approved.
The plan underestimates	1. Dr. Anil Cabraal	The approved plan has considered capital cost reduction for solar plants only. (initial
the expected cost	2. Mr. Parakrama Jayasinghe	1400USD/KW gradually reduced to 900USD/KW by 2025).
reductions in renewable	3. Mr. Vidhura Ralapanawa	
technology		The Commission will communicate to CEB to consider cost reduction trends of
		other renewables technologies also in future generation plans
Consideration of	1. Solar Industries Association	Noted
technological advances in	2. Mr. Vidhura Ralapanawa	
renewable technologies in	3. Mr. Mayura Botheju	The mentioned technologies have not been considered in the present plan other
the plan	4. Mr. Gananalingam	than pump storage hydro power plants.
-smart networks,	5. Mr. Anusha De Silva	
-battery storage systems	6. Dr. Lilantha Samaranayeke	The Commission take the observation into very serious consideration and discuss
-vehicle charging	7. Mr. E M Piyasena	with CEB on how to incorporate the developing technologies in future generation
-smart grids to mitigate		plans.
stability issues		
Plan has not considered	1. Dr. Anil Cabraal	Noted
Demand Side Management	2. Environmental Foundation	
(DSM) initiatives of the	Limited	The Commission noted that the demand reduction targets based on the Demand
government.	3. Mr. Vidhura Ralapanawa	Side Management initiatives are currently being identified by the Presidential Task
	4. Institute of Engineers Sri	Force and the Sustainable Energy Authority.
	Lanka	
	5. Mr Parakrama Jayasinghe	The Commision will communicate to CEB and SEA to take the required actions to
	6. Mr. E M Piyasena	incorporate the impact of DSM in next generation plan.
Consideration of availability	1. Environmental Foundation	Noted .
of Domestic Natural Gas in	Limited	
the plan	2. Petroleum Resources	The approved plan includes Natural gas fired power plants, hence, the plan provides
	Development Secretariat	more opportunity for utilization of domestic natural gas.
	3. Mr Gayan Heenatiyana	

		At the same time, Petroleum Resources Development Secretariat pointed out about the availability of domestic natural gas by 2021-23, subjected to finding an investor by 2018 at the public consultation held by the Commission The Commission will communicate to CEB to conduct a scenario analysis
		considering the availability of domestic natural gas for future generation plans.
If high cost renewables are added instead of low cost power plants, the government should compensate for the additional cost.	 Mr. Asela Pathberiya Mr. Sampath Thilakarathne 	In line with the provision of the Sri Lanka Electricity Act, the Government has the power to decide on the compensation if relevant.
Solar plants generate energy only in day hours and this will cause even more sharp night peak.	Mr. Dammika Kulathilaka	Noted Please note that the day peak demand of the system is increasing at a higher rate than the night peak demand according to the proposed plan. It is expected that the day peak will exceed the night peak in the year 2030. Hence, having more solar plants will provide a larger portion of daily energy requirements, whereas hydro plants can be used for night peak. The battery storage option can also be considered as a solution for sharp night peak resulted by solar generation, in future plans with decreasing costs.
Even though border prices are used for the preparation of the plan, actual dispatch is conducted based on market prices of the fuel	 Mr. Hasala Dharmawar. Sri Lanka Energy Managers Association 	We agree that at present the merit order dispatch is based on the market prices of fuel. The Commission will consider issuing a regulatory tool to ensure that the fuel prices consider in merit order dispatch, do not vary from the border prices of fuel used in preparation of the plan.
Transmission cost also should be considered, when least cost is identified.	 Dr. Anil Cabraal SC 	 The plan has not considered the cost of transmission lines due to the limitation of the software that used to develop the plan. However, the Commission encourage CEB to adopt best practices in the world to develop the future plans and the issue will be addressed in the future plans.

Pessimistic Network losses	1. Sri Lanka Energy Managers	Noted
forecast	Association	
- Network loss in 2016 is	2. Dr. Tilak Siyamabalapitiya	The Commission has issued loss targets to CEB for next 4 years (7.5% by 2020) but it
9.64% the forecast for 2042		is noted that it has not been considered.
is 9%		
-Not complied with loss		The Commission will strictly consider this in future generation plans.
targets issued by PUCSL		
until 2020		
Sri Lanka being a small	1. Dr. Anil Cabraal	The Commission appreciate these observations.
country with a high	2. Dr. Janaka Ratnasiri	
population density, a	3. Mr. Nimal Liyanage	Nuclear power is considered only as a potential thermal generation option in the
nuclear plant will not be		study. However, base case plan or the approved plan does not include any nuclear
socially acceptable		power plants.
Milestones to be achieved	1. Atomic Energy Board	The Commission appreciate these observations.
to develop Nuclear power	2. Dr. Lilantha Samaranayeke	
- No valid logic behind		The decision to proceed with nuclear power plants, will depend on the government
delaying Nuclear plants		policy on Nuclear based generation.
until 2030		
Basis for having 5% amount	1. Mr. Hasala Dharmawar.	Noted.
of extra spinning capacity	2. Dr. Tilak Siyambalapitiya	Additional spinning capacity for renewable energy considers in this plan, (5%) was
per MW of ORE, is not		determined based on the outcome of frequency stability studies in Renewable
clear.		energy integration study "Integration of Renewable Base Generation in to Sri
Pollution and adverse		Lankan Grid 2017-2018"
	1. Environmental Foundation	Noted.
effects to biodiversity by	Limited 2. Rainforest Protectors of Sri	The Commission will communicate with Control Environmental Authority (CEA) and
Mini-hydro plants, small/mega solar plants	2. Rainorest Protectors of Sri Lanka	The Commission will communicate with Central Environmental Authority (CEA) and SEA to ensure required EIA is conducted prior to implementation of other
and wind plants cannot be	Lairka	renewable plants and also to ensure post monitoring requirements in the EIA are
ignored.		met during the operation of the plant.
The CEB is seeking, Variable	1. Dr. Anil Cabraal	The Commission appreciate these observations.
Renewable Energy	2. Mr. Mayura Botheju	The commission appreciate these observations.
curtailment rights. This is		Approved plan will include only least cost plants. LNG plants will provide additional
not acceptable		flexibility of operating in lower capacity factor and hence, will reduce the
		nexisinty of operating in lower capacity factor and hence, will reduce the

- due to asymmetry of		requirements for renewable curtailments, compared to coal plants.
negotiating power between		
CEB and the variable		However, when intermittent generation capacity is high, in certain instances it is
renewable energy		required to limit the power output of intermittent sources to avoid overloading of
developers.		the Transmission System. This is an accepted international practice. However,
-Nowhere in the world		agreements with the power producers and CEB, including terms for procedures and
renewable energy is		compensation for curtailments will be established prior to exercising any
curtailed to generate from		curtailment rights.
fossil fuel		
Coal plants should not be	1. Dr. Anil Cabraal	The approved LCLTGEP 2018 -37 considered the externality costs (social and
considered, when Paris	2. Mr. Ranjith Vithanage	environment costs) and power plants qualify according to the least cost principals
Agreement specifically,		were approved.
noted that Sri Lanka		Please note that the Paris Agreement specifies that Sri Lanka has taken initiatives to
cancelled plans to build		eliminate introducing coal plants from 2030.
4700 MW of coal-fired		
power generation.		
Timely implementation of	1. Dr. Tilak Siyamabalapitiya	Noted
power plants should be	2. Petroleum Resources	
ensured.	Development Secretariat	The Commission will communicate to CEB to submit implementation plans for the
	3. Mr. Dammika Kulathilaka	first 10 years of the approved plan, with millstones.
		Please note that CEB has already submitted the plans for the base case in the draft plan.
		The commission expects to monitor the progress regularly against the submitted milestones and take remedial actions if any delays in implementation are observed.
Coal Jetty, harbour and fuel	1. Dr. Anil Cabraal	The approved LCLTGEP 2018-37 has considered the costs of coal harbour, jetty and
transport cost should be	2. Mr. Vidura Ralapanawa	coal transport infrastructure in the decision given.
considered in the plan.		
Slow implementation of	3. Rainforest Protectors of Sri	Noted.
government initiatives on	Lanka	
solar roof top capacity	4. Mr. Bandula Unamboowa	Please note that the CEB and LECO have been already in the process of providing
additions / proposals to	5. Dr. U Pethiyagoda	concessionary loans for rooftop solar installation.

expedite rooftop solar		
plants.		The Commission has issued a directive to CEB, to provide grid connections to
		rooftop solar in 2 weeks and also the exempted solar rooftop consumers from requiring licensees for selling electricity.
Need to consider the	Dr. Lalantha Samaranayeke	The Commission agrees.
scarcity of land especially in	,	
the urban areas, when		The Commission will consider conducting an independent study in future, regarding
development of power		land allocation for power projects in long term.
plants (eg. large scale solar)		
Requirement for proper	Dr. Lilantha Samaranayeke	The Commission agrees. The plan has not considered the disposal Requirements of
disposal mechanisms and		solar plants.
destinations for thrown out		
solar panels will have to be		The Commission will communicate with SEA and CEA to further study the
planned now.		requirement of a disposal mechanism for solar plants
Consideration procurement	Mr. Gamini S	Noted
of electricity through		
interconnectors		Governments of India and Sri Lanka signed a Memorandum of Understanding (MOU) in 2010 to conduct a feasibility study on inter-connection of the electricity grids of the two countries.
		This feasibility study was carried by CEB jointly with Power Grid Corporation Indian Limited (POWERGRID) with the main objective to provide the necessary recommendations for implementation of the 1000MW HVDC interconnection project.
		However, this scenario was not considered in the present generation plan as the change in power systems are yet to study.
		This scenario can be incorporated into future plans, once the feasibility of such option is identified in the updated studies.
Require identification of	Strategic Enterprise Management	Noted
Policy Cost	Agency	
		The observation will be incorporated for the revised planning code.

Different plan is proposed.	Mr. Imran Ansari	The proposed changes are not considered in the approved plan, as the basis of the changes was not provided.
New technology for wind based energy	Mr. S Karunadasa	The proposed technology is not considered in the approved plan, as sufficient information regarding the technology is not available.
Proposal for LNG supply to Sri Lanka	Brightstar	The proposal is not considered in the approved plan, as this has no direct relevance to the approval process of the plan.

Commenters on Draft Plan

- 1. Dr. Anil Cabraal
- 2. Mr. Asela Pathberiya
- 3. Mr. Dasun Andarage
- 4. Mr. Hasala Dharmawardene
- 5. Mr. Imran Ansari
- 6. Mr. Ranjith Vithanage-National Movement for Consumer Rights Protection
- 7. Mr. Sampath Thilakarathne
- 8. SC
- 9. Sri Lanka Energy Mangers Association
- 10. Environmental Foundation (Guarantee) Limited (EFL)
- 11. Dr. Janaka Ratnasiri
- 12. Mr. K C Somaratne
- 13. Ms. Neela Marikkar
- 14. Mr. Parakrama Jayasinghe (Bio Energy Association)
- 15. Petroleum Resources Development Secretariat (PRDS)
- 16. Small Hydro Power Developers Association
- 17. Solar Industries Association
- 18. Rainforest Protectors of Sri Lanka

Commenters on Input Data

- 1. Dr. Tilak Siyamabalapitiya
- 2. Gayan Heenatiyana
- 3. Gamini Samarasinghe
- 4. Mr. Clifford Regis
- 5. Prof. Kumar David
- 6. Dr U.Pethiyagoda.
- 7. Mr. Anil Cabraal

- 19. Dr. Tilak Siyambalapitiya 20. Mr. Vidhura Ralapanawa 21. Mr. Anusha De Silva 22. Mr. Dhammika Kulathilaka 23. Prof. Praveen Aberatne 24. Dr. Lilantha Samaranayeke 25. Mr. Mayura Botheju 26. SLYCAN Trust 27. Atomic Energy Board 28. Mr. Bandula Unamboowa 29. Mr. Gayan Heenatiyana 30. Mr. W A D R Jayawardene 31. Mr. K.Gnanalingam 32. Mr. S Karunadasa 33. Brightstar 34. Strategic Enterprise Management Agency (SEMA)
- 35. Institute of Engineers Sri Lanka
- 36. Mr. E M Piyasena
- 8. Environmental Foundation (Guarantee) Limited(EFL)
- 9. Renewable Energy Developers Association (REDA)
- 10. Nimal Liyanage
- 11. SC
- 12. Mr. Vidura Ralapanawe
- 13. Eng. M V R Perera