# Generation Performance in Sri Lanka 2015 (First Half)





PUBLIC UTILITIES COMMISSION OF SRI LANKA



# Content

| Chapter 1 – Introduction                                         | 1  |
|------------------------------------------------------------------|----|
| Chapter 2 – Energy Generation                                    | 2  |
| Chapter 3 – System Peak Demand                                   | 5  |
| Chapter 4 – Load Factor                                          | 5  |
| Chapter 5 – Plant Factor                                         | 6  |
| Chapter 6 – Running Plant Factor                                 | 10 |
| Chapter 7 – Generation Cost                                      | 12 |
| 7.1 - Amount Paid in Excess of Capacity and Energy Charges       | 13 |
| Chapter 8 – Comparison of Scheduled Dispatch and Actual Dispatch | 13 |
| Chapter 9 – Auxiliary Consumption                                | 14 |
| Chapter 10 – Availability Factor                                 | 14 |
| Chapter 11 – Reservoir Storages                                  | 16 |
| Chapter 12 – Conclusion                                          | 18 |

# 1. Introduction

During the first half of year 2015, maximum recorded electricity demand in Sri Lanka was 2210.4MW (excluding the contribution of SPP Mini Hydro, Solar and Biomass) which is a higher value compared to the maximum demand of 2151.7MW in year 2014. In order to reach this demand and to cater the electricity requirement in Sri Lanka, altogether 196 Grid connected power plants with total installed capacity of 3917MW have been operated in the first half of 2015. Out of these power plants 27 have been owned and operated by Ceylon Electricity Board including 17 hydro plants, 9 thermal plants and 1 wind power plant. Withal, 6 thermal power plants have been operated by Independent Power Producers (IPPs) and 163 renewable power plants have been operated by Small Power Producers (SPPs) including mini hydro plants, solar power plants, wind power plants and biomass power plants. Out of the above, 5 renewable power plants have been commissioned in the first half of 2015 to strengthen the generation capacity of the country. Also, the contract period of the private power plants ACE Power Embilipitiya and Colombo Power Barge expired by April and June 2015 respectively.

The chart below shows the existed installed capacities in MW of each type of power plants by the end of June 2015.



This Generation Performance Report contains a summary of information and performance statistics of the generation units and electricity network in Sri Lanka for the first half of year 2015.

All the index and other calculations in this report have been done based on the data received through Licensee Information Submission System (LISS) and details obtained from CEB Monthly Operational Data Reports.

# 2. Energy Generation

All grid connected generation plants sell their power to the only transmission licensee in Sri Lanka to deliver the power to the consumers through distribution licensees.

|           | Jan   | Feb | Mar   | Apr   | May   | Jun   | Total |
|-----------|-------|-----|-------|-------|-------|-------|-------|
| CEB Hydro | 499   | 361 | 312   | 383   | 481   | 326   | 2,361 |
| CEB Oil   | 25    | 70  | 91    | 41    | 14    | 121   | 361   |
| CEB Coal  | 393   | 389 | 528   | 485   | 493   | 380   | 2,667 |
| IPP       | 31    | 63  | 131   | 31    | 7     | 140   | 403   |
| Renewable | 94    | 79  | 61    | 97    | 136   | 139   | 607   |
| Total     | 1,041 | 962 | 1,123 | 1,036 | 1,132 | 1,106 | 6,400 |

The chart and graph below shows the semiannual generation figures in 2015 in GWh.

Source :LISS

The chart below shows the generation mix in Sri Lanka for the first six months of 2015.





The chart below shows the generation mix in Sri Lanka for the first six months of 2014.

The chart below shows the monthly variation of generation mix in Sri Lanka during the first six months of 2015.





The following chart shows the daily variation of generation mix in Sri Lanka during the first six months of 2015.

Note: Daily generation data of renewable power plants is not included.



The following chart shows the variation of generation mix in Sri Lanka over the past few years.

# 3. System Peak Demand

CEB System Control records the daily peak power demand of the country.

Daily variation of country's system peak demand during the first half of the year 2015 is depicted by the following graph.



Highest Peak Demand: 2210.4MW on 23<sup>rd</sup> March 2015

Lowest Peak Demand: 1494.6MW on 15th April 2015

*Lowest Demand* : 608.2MW on 14<sup>th</sup> April 2015

Note: NCRE contribution of SPP Mini Hydro, Solar and Biomass is not included for the peak demand.

## 4. Load Factor

Load Factor is an indicator which shows how steady an electrical load over time. It is simply the average load divided by the peak load in a system over a period of time. But normally load factor is calculated subjected to the produced energy according to the following formula.

 $Load \ Factor = \frac{Total \ Generation \ During \ the \ Nominal \ Period}{Maximum \ Demand \ x \ No. \ of \ hours \ in \ the \ report \ period}$ 

Calculated Load Factor for the total system for first half of year 2015 = 61.8%

Calculated Load Factor for the total system for first half of year 2014 = 62.1%

Load factor of any system must be tried to keep in its maximum by pulling down the concentrated maximum demand and shifting the loads to periods of otherwise low usage. Load factor maximization is essential in maintaining the security of supply of the countries in which, meeting the concentrated maximum demand is critical. Countries which have a flat load curve own a higher load factor.



Sri Lanka has a load curve with a steep peak in the night, where starting from about 6.00 pm the load grows to about 2,100 MW by 7.30 pm and starts falling off after about 08.30 pm. Therefore the system must be comprised a substantial additional generation capacity only to meet that abrupt sharp night peak; hence the load factor in Sri Lanka is comparatively low. As a solution for that, CEB has introduced a three tier tariff plan for the industrial electricity consumers with low off peak rates and penal peak rates to smoothen the daily peak load and push some industrial activities to low demand hours, and this time-of-day tariff scheme is expected to be facilitated for the domestic consumers as well in near future.

**Note**: Load Factors were calculated excluding NCRE contribution of SPP Mini Hydro, Solar and Biomass component of the system

## 5. Plant Factor

The plant factor of a power plant is the ratio of the actual energy output of the power plant over a period of time to its potential output if it had operated at full nameplate capacity the entire time.

Plant Factors vary greatly depending on the type of power plants and it is calculated according to the following formula.

 $Plant Factor = rac{Actual Energy Production During the Nominal Period}{Potential Energy Production During the Period}$ 

Calculated plant factors for all grid connected power plants in Sri Lanka during the first half of the year 2015 are listed below.

## **CEB Hydro**

| Old Laxapana | 68.5% | Ne  | w Laxapana | 49.20% |
|--------------|-------|-----|------------|--------|
| Inginiyagala | 62.0% | Sar | manala     | 45.7%  |
| Polpitiya    | 58.9% | Rai | ndenigala  | 45.6%  |
| Udawalawe    | 53.4% | Uk  | uwela      | 45.5%  |
| Rantambe     | 52.6% | Vic | toria      | 43.1%  |
| Nilambe      | 49.4% | Kul | kule       | 38.5%  |

| Wimalasurendra | 30.8% |
|----------------|-------|
| Canyon         | 29.8% |
| Upper Kotmale  | 27.1% |
| Kotmale        | 19.8% |
| Bowatenna      | 17.7% |

## **CEB & IPP Thermal**

Plant Factors of thermal power plants are listed below in the order of calculated unit cost for the first half of year 2015.

| 1 | Puttalam Coal I   | 68.2% |
|---|-------------------|-------|
| 2 | Puttalam Coal II  | 68.5% |
| 3 | Puttalam Coal III | 67.9% |
| 4 | Colombo Power     | 46.9% |
| 5 | ACE Embilipitiya  | 33.0% |
| 6 | AES Kelanitissa   | 1.5%  |
| 7 | Kelanitissa CCY   | 40.3% |
| 8 | Uthura Janani     | 44.7% |

| 9  | Asia Power            | 19.9% |
|----|-----------------------|-------|
| 10 | Westcoast             | 11.2% |
| 11 | Sapugaskanda A        | 6.7%  |
| 12 | Kelanitissa PS GT 7   | 0.6%  |
| 13 | Sapugaskanda B        | 1.2%  |
| 14 | Northern Power        | 1.9%  |
| 15 | Kelanitissa Small GTs | 0.1%  |

**CEB Wind –** 4.0%

SPP

| 511                  |       |
|----------------------|-------|
| Badulu Oya MHP       | 75.2% |
| Lenadora MHP         | 66.6% |
| Kirkoswald MHP       | 65.4% |
| Loggal Oya MHP       | 61.3% |
| Wee Oya MHP          | 58.6% |
| Waverly MHP          | 57.9% |
| Mulgama MHP          | 57.4% |
| Hapugastenna - 1 MHP | 56.3% |
| Batatota MHP         | 56.1% |
| Gomala Oya MHP       | 55.1% |
| Manelwala MHP        | 54.5% |
| Ranmudu Oya MHP      | 54.4% |
| Bogandana MHP        | 54.0% |
| Watakelle MHP        | 53.8% |
| Maduruoya II MHP     | 53.7% |
| Somerset MHP         | 53.7% |
| Rajjammana MHP       | 53.1% |
| Ritigaha Oya I MHP   | 53.1% |
| Rathganga MHP        | 52.6% |
| Mille Oya MHP        | 51.7% |
| Kaduruwan Dola MHP   | 51.4% |
| Green Energy MHP     | 50.8% |
| Belihul Oya Oya MHP  | 49.6% |
| Soranathota MHP      | 49.0% |
| Owala MHP            | 48.7% |
| Maduruoya MHP        | 47.8% |
| Pathaha MHP          | 47.8% |
| Denawak Ganga MHP    | 47.7% |
| Ritigaha Oya II MHP  | 47.6% |
| Upper Hal Oya MHP    | 47.3% |
| Amanawala Oya MHP    | 45.8% |
| Giddawa MHP          | 45.0% |
| Lemastota MHP        | 45.0% |
| Lower Neluwa MHP     | 44.7% |
| Sithagala MHP        | 44.5% |
| Kumburuteniwela MHP  | 44.4% |
| Palmerston MHP       | 43.6% |
| Hapugastenna - 2 MHP | 43.4% |
| Kandadola MHP        | 42.7% |
| Kokawita 1 MHP       | 42.7% |
| Ross State MHP       | 42.7% |
| Indurana MHP         | 42.2% |
| Waltrim MHP          | 42.0% |
| Asupiniella MHP      | 41.8% |
| Bopekanda MHP        | 41.7% |
| Punugala MHP         | 41.5% |
| Rakwana Ganga II MHP | 41.3% |
|                      |       |

| Sheen MHP                 | 39.8% |
|---------------------------|-------|
| Kotanakanda MHP           | 39.8% |
| Kudawa Lunugalahena MHP   | 39.3% |
| Delta MHP                 | 39.3% |
| Alupola MHP               | 39.1% |
| Erathna (Waranagala) MHP  | 39.1% |
| Bulathwaththa MHP         | 39.1% |
| Koladeniya MHP            | 38.8% |
| Henfold (Agra Oya) MHP    | 37.9% |
| Gampola Walakada MHP      | 37.9% |
| Maha Oya MHP              | 37.0% |
| Wembiyagoda MHP           | 36.7% |
| Magal Ganga MHP           | 36.2% |
| Guruluwana MHP            | 36.1% |
| Rideepana MHP             | 36.1% |
| Madugeta MHP              | 36.0% |
| Lower Hemingford MHP      | 35.0% |
| Watawala B Estate MHP     | 34.9% |
| Kotapola (Kiruwana) MHP   | 34.8% |
| Wellawaya MHP             | 34.4% |
| Dick Oya MHP              | 33.9% |
| Miyanawita Oya MHP        | 33.0% |
| Bambarabatu Oya MHP       | 32.7% |
| Gangaweraliya MHP         | 31.4% |
| Lower Kotmale Oya MHP     | 31.3% |
| Upper Ritigaha Oya MHP    | 31.2% |
| Werapitiya MHP            | 31.0% |
| Karawila Ganga MHP        | 30.3% |
| Kalupahana MHP            | 30.3% |
| Kabaragala MHP            | 30.2% |
| Niriella MHP              | 29.9% |
| Branford MHP              | 29.9% |
| Gurugoda Oya MHP          | 29.7% |
| Way Ganga MHP             | 29.7% |
| Huluganga MHP             | 29.3% |
| Kalupahana Oya MHP        | 29.0% |
| Bowhill (Kadiyanlena) MHP | 29.0% |
| Seetha Eliya MHP          | 28.8% |
| Atabage Oya MHP           | 28.8% |
| Koswatta Ganga MHP        | 28.8% |
| Coolbawn MHP              | 28.8% |
| Maa Oya MHP               | 28.7% |
| Minuwanella MHP           | 28.4% |
| Ganthuna Udagama MHP      | 27.9% |
| Dunsinane MHP             | 27.9% |
| Brunswic MHP              | 27.8% |
| Barcaple II MHP           | 27.7% |
|                           |       |

| Monaraela MHP                | 27.5% |
|------------------------------|-------|
| Kadurugal Dola MHP           | 27.4% |
| Labuwewa MHP                 | 27.3% |
| Battalagala MHP              | 26.9% |
| Bambarabotuwa III MHP        | 26.4% |
| Rakwana Ganga MHP            | 26.1% |
| Kudah Oya MHP                | 25.4% |
| Adavikanda MHP               | 24.8% |
| Radella MHP                  | 23.9% |
| Galabod MHP                  | 23.9% |
| Galatha Oya MHP              | 23.9% |
| Upper Magal Ganga MHP        | 23.8% |
| Barcaple I MHP               | 23.3% |
| Lower Atabage MHP            | 22.9% |
| Falcon Valley MHP            | 22.6% |
| Halathura Ganga MHP          | 22.0% |
| Deiyanwala MHP               | 21.8% |
| Bambarabotuwa II MHP         | 21.6% |
| Watawala MHP                 | 21.5% |
| Nakkawita MHP                | 20.9% |
| Black Water MHP              | 20.4% |
| Nandurana MHP                | 20.4% |
| Devituru MHP                 | 20.3% |
| Kehelgamu Oya MHP            | 19.5% |
| Kadawala I MHP               | 19.5% |
| Nugedola MHP                 | 19.3% |
| Stellenberg MHP              | 19.2% |
| Forest Hill MHP              | 19.1% |
| Gampola MHP                  | 18.8% |
| Upper Korawaka MHP           | 18.2% |
| Gonagamuwa MHP               | 16.5% |
| Aggra Oya MHP                | 16.4% |
| Nilambe Oya MHP              | 15.1% |
| Dunsinane Cottage MHP        | 14.5% |
|                              | 14.5% |
| Pathanahenagama MHP          |       |
| Kiriwan Eliya MHP            | 13.8% |
| Glassaugh MHP<br>Kolonna MHP | 13.7% |
|                              | 13.5% |
| Baharandha MHP               | 13.4% |
| Bowhill MHP                  | 12.9% |
| Kolapathana MHP              | 9.9%  |
| Mul Oya MHP                  | 9.2%  |
| Kalugala-Pitawala MHP        | 6.1%  |
| Naya Ganga MHP               | 5.9%  |
| Kadawala I MHP               | 5.5%  |
| Sanquahar MHP                | 5.3%  |
| Mandagal Oya MHP             | 3.0%  |

| Bathalayaya BMP  | 71.2% |
|------------------|-------|
| Badalgama BMP    | 27.1% |
| Ninthaur BMP     | 16.0% |
| Tokyo BMP        | 11.5% |
| Embilipitiya BMP | 2.5%  |

| Gonnoruwa I SPP  | 19.1% |
|------------------|-------|
| Gonnoruwa II SPP | 17.9% |

**MHP** – Mini Hydro Plant **WPP** – Wind Power Plant **BMP** – Biomass Plant **MHP** – Solar Power Plant

First Semi Annual Overall Plant Factors for the major types of generation options in 2014 & 2015 are given below.



Overall plant factors of CEB hydro plants and Renewable plants have been improved due to rich rainfall, which has highly impacted towards the reduction of thermal oil plant dispatch.

The chart below shows the variation of plant factors during the first 6 months of different types of generation plants operated in 2015.



# 6. Running Plant Factor

The running plant factor of a generation unit is the ratio of the actual energy output of a generation unit over a period of time to its potential output if it had operated at full nameplate capacity during the period in which it has been operated.

Running Plant Factor shows the extent to which the generation units have been operated when they are running out of their nominal capacities.

Calculated running plant factors for generation units operated in the first half of the year 2015 are listed below.

### **CEB Hydro**

| Nilambe        | Unit 1-2 | 100.00% |
|----------------|----------|---------|
|                | Unit 1   | 59.02%  |
| Upper Kotmale  | Unit 2   | 97.18%  |
|                | Unit 1   | 96.08%  |
|                | Unit 2   | 92.66%  |
| Old Laxapana   | Unit 3   | 95.50%  |
|                | Unit 4   | 84.60%  |
|                | Unit 5   | 83.87%  |
| Inginiyagala   | Unit 1-4 | 95.18%  |
| Ukuwela        | Unit 1   | 94.81%  |
|                | Unit 2   | 94.35%  |
| Pandenigala    | Unit 1   | 89.39%  |
| Randenigala    | Unit 2   | 92.19%  |
| Udawalawe      | Unit 1-3 | 90.89%  |
| Kukule         | Unit 1   | 90.77%  |
| Kukule         | Unit 2   | 89.24%  |
| Samanalawewa   | Unit 1   | 65.56%  |
| Sanialialawewa | Unit 2   | 86.88%  |

| Rantambe       | Unit 1 | 84.76% |
|----------------|--------|--------|
|                | Unit 2 | 85.79% |
| Conven         | Unit 1 | 72.87% |
| Canyon         | Unit 2 | 59.97% |
|                | Unit 1 | 60.27% |
| Kotmale        | Unit 2 | 64.66% |
|                | Unit 3 | 72.40% |
|                | Unit 1 | 61.06% |
| Victoria       | Unit 2 | 68.02% |
|                | Unit 3 | 69.03% |
|                | Unit 1 | 64.68% |
| Wimalasurendra | Unit 2 | 65.34% |
| Deleitive      | Unit 1 | 64.46% |
| Polpitiya      | Unit 2 | 56.76% |
| New Laxapana   | Unit 1 | 50.90% |
|                | Unit 2 | 50.38% |
| Bowatenna      | Unit 1 | 39.67% |
| Bowatenna      | Unit 1 | 39.67% |

#### **CEB** Thermal

| Puttalam Coal  | Unit 1  | 82.33% |
|----------------|---------|--------|
|                | Unit 2  | 76.87% |
|                | Unit 3  | 75.04% |
|                | Unit 5  | 83.60% |
|                | Unit 6  | 86.75% |
|                | Unit 7  | 91.74% |
|                | Unit 8  | 76.19% |
| Sapugaskanda 2 | Unit 9  | 88.67% |
|                | Unit 10 | 0.00%  |
|                | Unit 11 | 90.00% |
|                | Unit 12 | 81.58% |
| Sapugaskanda 1 | Unit 1  | 78.05% |
|                | Unit 2  | 75.84% |
|                | Unit 3  | 0.00%  |
|                | Unit 4  | 87.63% |
|                |         |        |

| Uthuru Janani | Unit 1 | 100.00% |
|---------------|--------|---------|
|               | Unit 2 | 98.44%  |
|               | Unit 3 | 98.67%  |
| KPS CCY       | GT     | 85.44%  |
|               | ST     | 94.15%  |
| KPS GT7       | Unit 7 | 66.76%  |
| KPS(Small) GT | Unit 1 | 62.91%  |
|               | Unit 2 | 72.11%  |
|               | Unit 4 | 90.59%  |
|               | Unit 5 | 84.44%  |

### **IPP Thermal**

| Asia Power          | Unit 1-8     | 88.23%  |
|---------------------|--------------|---------|
| ACE Embilipitiya    | Unit 1-14    | 92.54%  |
| Colombo Power-Barge | Unit 1-4     | 100.00% |
| AES Kelanitissa     | GT & ST      | 77.03%  |
| Westcoast           | GT 1, 2 & ST | 84.71%  |

**Note**: Running Plant Factors for SPPs were not calculated since the operation durations of those plants were not available.

# 7. Generation Cost

| Power Station                | Semi Annual Generation<br>(GWh) | Total Cost to CEB<br>(Mn.LKR) | Average Unit<br>Cost(Rs/kWh) |
|------------------------------|---------------------------------|-------------------------------|------------------------------|
| Asia Power                   | 44                              | 1,964                         | 44.53                        |
| AES Kelanitissa              | 10                              | 594                           | 57.01                        |
| Colombo Power                | 122                             | 3,062                         | 25.04                        |
| ACE Embilipitiya             | 95                              | 2,338                         | 24.58                        |
| Westcoast                    | 131                             | 5,991                         | 45.75                        |
| Northern Power               | 0.38                            | 40                            | 104.18                       |
|                              |                                 |                               |                              |
| Sapugaskanda A               | 18                              | 1,592                         | 86.10                        |
| Sapugaskanda B               | 4                               | 1,438                         | 389.76                       |
| Kelanitissa Small GTs        | 0.27                            | 511                           | 1900.49                      |
| Kelanitissa PS GT 7          | 3                               | 805                           | 262.72                       |
| Kelanitissa CCY              | 289                             | 8,601                         | 29.75                        |
| Puttalam Coal                | 2,667                           | 20,364                        | 7.63                         |
| Uthura Janani                | 47                              | 1,413                         | 30.35                        |
|                              |                                 |                               |                              |
| Victoria                     | 393                             | 1,246                         | 3.17                         |
| Ukuwela                      | 79                              | 339                           | 4.30                         |
| Kotmale                      | 173                             | 1,074                         | 6.20                         |
| Upper Kotmale                | 176                             | 890                           | 5.05                         |
| Randenigala/Rantambe         | 356                             | 920                           | 2.58                         |
| Bowatenna                    | 31                              | 253                           | 8.23                         |
| Nilambe                      | 6                               | 61                            | 9.42                         |
| Old Laxapana/New<br>Laxapana | 405                             | 753                           | 1.86                         |
| Polpitiya                    | 192                             | 279                           | 1.45                         |
| Wimalasurendra               | 67                              | 203                           | 3.03                         |
| Canyon                       | 78                              | 406                           | 5.23                         |
| Samanalawewa                 | 238                             | 979                           | 4.10                         |
| Kukule                       | 126                             | 404                           | 3.22                         |
| Inginiyagala                 | 27                              | 78                            | 2.90                         |
| Udawalawe                    | 14                              | 68                            | 4.90                         |
|                              |                                 |                               |                              |
| Renewable                    | 607                             | 10,292                        | 16.97                        |
|                              | 2 261                           | 7.053                         | 2.27                         |
| All Hydro<br>All CEB Thermal | 2,361<br>3,029                  | 7,952<br>34,724               | 3.37<br>11.47                |
| All LEB Thermal              | 403                             | 13,989                        | 34.69                        |
| All Plants                   | 6,400                           | 66,957                        | 10.46                        |
|                              | 0,400                           | 00,997                        | 10.40                        |

Source: LISS Data Note: Cost of operating Hydro plants were obtained through estimated BST (Bulk Supply Tariff) values

## 7.1 Amount Paid in Excess of Capacity and Energy Charges

CEB has paid to Independent Power Producers (IPP) in excess of capacity and energy charges according their Power Purchase Agreements (PPA). The amounts which have been paid are summarized below.

| Power Plant           | Start/Stop Charge<br>(Mn.LKR) | Reimbursement Claim<br>(Mn.LKR) | O & M Charge<br>(Mn.LKR) | Total<br>(Mn.LKR) |
|-----------------------|-------------------------------|---------------------------------|--------------------------|-------------------|
| Asia Power            | 30.13                         | 46.50                           |                          | 76.63             |
| AES - Kelanitissa     | 39.45                         | 23.07                           |                          | 62.52             |
| Colombo Power - Barge | 43.18                         | 269.68                          |                          | 312.87            |
| ACE Embilipitiya      | 40.67                         | 63.12                           |                          | 103.79            |
| Westcoast             | 118.75                        | 230.18                          |                          | 348.93            |
| Northern Power        | 0.00                          | 2.02                            | 1.08                     | 3.10              |
| Total (Mn.LKR)        | 272.19                        | 634.57                          | 1.08                     | 907.84            |

# 8. Comparison of Scheduled Dispatch and Actual Dispatch

CEB implements a generation dispatches schedule every 6 months prior operation. It contains the amount of energy to be produced by each power plant for the forthcoming months. Due to numerous reasons the actual dispatch could be deviated from this schedule and, the comparison between actual and scheduled dispatches for the first six months of year 2015 is given below.

|                         | Capacity<br>MW | Scheduled<br>GWh | Actual<br>GWh | Variation<br>GWh | Scheduled<br>PF | Actual<br>PF |
|-------------------------|----------------|------------------|---------------|------------------|-----------------|--------------|
| Puttalam Coal           | 900            | 2,597            | 2,667         | 71               | 66%             | 68%          |
| ACE Embilipitiya        | 100            | 65               | 95            | 30               | 15%             | 22%          |
| Colombo Power Barge     | 60             | 253              | 122           | -131             | 97%             | 47%          |
| KPS CCY                 | 165            | 471              | 289           | -182             | 66%             | 40%          |
| Uthuru Janani           | 24             | 96               | 47            | -50              | 92%             | 45%          |
| ASIA Power              | 51             | 166              | 44            | -122             | 75%             | 20%          |
| Westcoast               | 270            | 512              | 131           | -381             | 44%             | 11%          |
| AES Kelanitissa         | 163            | 166              | 10            | -156             | 23%             | 1%           |
| Sapugaskanda A          | 72             | 103              | 18            | -84              | 33%             | 6%           |
| Northern Power          | 27             | 70               | 0             | -69              | 59%             | 0%           |
| KPS GT 7                | 115            | 38               | 3             | -35              | 8%              | 1%           |
| Sapugaskanda B          | 72             | 38               | 4             | -35              | 12%             | 1%           |
| KPS Small GTs           | 68             | 6                | 0             | -5               | 2%              | 0%           |
| Total Grid Con. Thermal | 2,087          | 4,580            | 3,432         | -1,148           | 51%             | 38%          |
| Renewable energy        | 450            | 406              | 607           | 201              | 21%             | 31%          |
| CEB Hydro               | 1,380          | 1,542            | 2,361         | 820              | 26%             | 39%          |
| Total Generation        | 3,917          | 6,528            | 6,400         | -128             | 38%             | 38%          |

# 9. Auxiliary Consumption

Auxiliary system facility is a major part of a power generation facility and the auxiliary consumption of a power plant depends on its configuration, age and related technical parameters. Purpose of an auxiliary system is to supply power for its own electricity requirements.

Normally 0.5% - 2% of power generated is consumed for the auxiliary system in hydro plants while the auxiliary consumption in fossil fuel power plants is 7% - 15% since there are different equipment like feed pumps, cooling water pumps, air fans, coal grinding mills, ash handling equipment etc. utilized in thermal plants.

Calculated percentages of auxiliary consumption of thermal power plants out of gross generation during 2015 are as follows.

| KPS Small GTs  | 13.1 % |
|----------------|--------|
| Puttalam Coal  | 9.3 %  |
| Sapugaskanda B | 8.0 %  |
| KPS GT 7       | 5.2 %  |
| Sapugaskanda A | 4.3 %  |
| Uthura Janani  | 2.9 %  |
| KPS CCY        | 2.3 %  |

## **CEB** Thermal

### **IPP Thermal**

| ACE Embilipitiya | 4.3 % |
|------------------|-------|
| Westcoast        | 3.4 % |
| Barge            | 3.3 % |
| AES Kelanitissa  | 2.7 % |
| Asia Power       | 2.0 % |

## **10. Availability Factor**

The evaluation of availability of a power plant is one of the most important tasks at any power station. To analyze plant availability performance, generation unit outages should be scrutinized to identify the causes of unplanned or forced energy losses and to reduce the planned energy losses. Reducing outages increases the number of operating hours, therefore increases the plant availability factor.

Availability Factor of a generation plant can be calculated using the formula given below.

$$Availability Factor = \frac{Duration in which the generation unit was available for opertaion}{Total length of the period}$$

Total Availability Factor for all CEB generation Units in first half of 2015 = 68%

Availability Factor for CEB hydro generation units in first half of 2015 = 83%

Availability Factor for CEB thermal generation units in first half of 2015 = 51%

Availability Factor for CEB wind generation units in first half of 2015 = 32%

Availability Factor for all IPP generation units in first half of 2015 = 98%

Calculated availability factors for CEB owned generation plants in the first half of year 2015 are listed below.

## CEB Hydro

| Rantambe       | 98.08% |
|----------------|--------|
| Randenigala    | 97.69% |
| Polpitiya      | 97.22% |
| New Laxapana   | 97.20% |
| Bowatenna      | 95.82% |
| Ukuwela        | 93.55% |
| Wimalasurendra | 88.71% |
| Canyon         | 88.58% |
| Samanalawewa   | 88.06% |

| Upper Kotmale | 86.36% |
|---------------|--------|
| Victoria      | 85.65% |
| Nilambe       | 84.58% |
| Kotmale       | 84.17% |
| Old Laxapana  | 79.06% |
| Kukule        | 66.42% |
| Inginiyagala  | 64.88% |
| Udawalawe     | 58.78% |

#### **CEB** Thermal

| Uthura Janani     | 96.21% |
|-------------------|--------|
| KPS CCY           | 91.64% |
| Puttalam Coal III | 90.75% |
| Puttalam Coal II  | 89.59% |
| KPS(Small) GT     | 83.20% |

| Puttalam Coal I | 82.82% |
|-----------------|--------|
| KPS GT7         | 75.44% |
| Sapugaskanda 1  | 24.22% |
| Sapugaskanda 2  | 3.34%  |

#### **IPP Thermal**

| AES Kelanitissa     | 99.94% |
|---------------------|--------|
| Westcoast           | 99.02% |
| Colombo Power-Barge | 97.98% |
| ACE Embilipitiya    | 97.54% |
| Asia Power          | 97.05% |

## **11.Reservoir Storages**

Hydro power is one of the major sources of electricity generation in the Sri Lanka and most of the large scale hydro projects have been developed by CEB. In 2015 approximately 37% of the total existed capacity by the end of June was covered by 17 CEB hydro stations and a contribution of 37% has been given out of total generation.

The major hydropower schemes already developed are associated with Kelani and Mahaweli river basins. Laxapana complex comprises five hydro power stations which have been built associated with the two main tributaries of Kelani River; Kehelgamu Oya and Maskeli Oya. Castlereigh and Moussakelle are the major storage reservoirs in the Laxapana complex. Mahaweli complex comprises seven hydro power stations and three major reservoirs; Kotmale, Victoria and Randenigala. In addition to above mentioned reservoirs Samanalawewa, which is on Walawe River, is also can be considered as a large reservoir. And all the other small reservoirs which contribute to power up the run-of-river type plants are considered as ponds.

Therefore having a satisfactory capacity of water in these reservoirs throughout the year is essential to dispatch the hydro power to a significant amount.

The major reservoir storage levels prevailed during the first half of the years 2015 are depicted below.





*Note:* Only Mahaweli, Laxapana and Samanalawewa Complexes' reservoirs are considered in total reservoir storage profile.



# **12.Conclusion**

Compared to the generation figures in first six months of year 2014, it can be perceived that hydro generation contribution has been improved from 19% to 37% during the first half of year 2015 as a result of the rich levels of hydro storage conditions. Also the contribution of renewable energy component has been improved to 9% which was 6% in the first half of 2014 and coal energy component has been improved to 42% which was 24% in the first half of 2014. As a result of that, IPP thermal generation has been dropped drastically to 6% during first six months of 2015.

The Report has described and calculated a number of key performance indicators for total generation system and individual generation plants operated in Sri Lanka. And it moreover gives a comparison of the generation statistics between first halves of year 2014 and 2015. The indicators for the present technical performance of the generation system are useful when planning the future developments and taking the corrective actions if necessary to improve the efficiency of generation.

Maximum electricity demand recorded in the year 2015 is 2210.4MW and it is expected to be risen to 2374MW in 2016 subjected to the peak demand growth rate of 7.4% as specified by the Long Term Generation Expansion Plan (2013-2032). To achieve this demand a system capacity of 3280MW (excluding NCRE contribution) is available to dispatch during the year 2016. Therefore there will be a Reserve Margin of 38% when the peak demand of year 2015 is reached, assuming that all the power plants are readily available to dispatch with their full capacities. But when it comes to the practical state it is obvious that all the plants will not be available fully at every time.

Therefore, even though the available dispatchable total capacity is dropped by 668MW, the Reserve Margin can be maintained above 10%, which is the minimum allowed Reserve Margin by the Least-Cost Generation Expansion Planning Code.